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� There is heterogeneity among
subgroups of haplogroup J which
influences AD risk.

� The heterogeneity among haplogroup
J influences the MCI-to-AD
conversion risk.
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of haplogroup J is independent of Ab
and p-tau.
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Introduction: The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been
fully elucidated and warrants further investigation at the subgroup level.
Objectives: The aim of this research is to evaluate the association between mitochondrial haplogroups
and AD risk in subgroups level.
Methods: In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the
AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypome-
tabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.
Results: The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD
group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, hap-
logroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbat-
ing and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher
AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion pro-
portion than other subgroups.
Conclusion: Heterogeneity existed among the subgroups of haplogroup J, which suggested that different
subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation
between mitochondrial haplogroups and AD risk.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease charac-
terized by the progressive impairment of cognitive function [1–3].
The pathogenesis of AD has not been fully elucidated [2]. However,
previous studies have highlighted the genetic heritability of AD
[4,5].

Several AD genetic risk factors have been identified, including
the apolipoprotein E gene, which is a strong genetic risk factor
for AD. Three rare mutations in amyloid beta precursor protein
(APP), Presenilin 1 (PSEN1), and PSEN2 are usually observed and
result in an early onset of AD [5,6]. However, previous studies have
suggested that the vast majority of AD cases are probably driven by
several genomic variants [7]. Therefore, genome-wide association
studies (GWAS) that aim to identify massive potential genomic risk
factors have been conducted [7]. Presently, more than 30 genetic
risk factors have been identified based on these GWAS studies
[7,8].

Most of these GWAS studies have focused on the association
between AD and nuclear genetic risk factors. However, few studies
have reported that certain nuclear genetic risk factors that encode
mitochondria-related proteins may impact mitochondrial function
directly or indirectly [8–11]. According to the findings of these
studies, mitochondrial dysfunction may play an important role in
AD pathogenesis. Mitochondrial dysfunction increases ROS gener-
ation, leading to oxidative damage, a key feature that precedes
widespread plaque pathology in the brains of patients with AD
[10]. As thirteen mitochondrial electron transport chain proteins
are transcribed from the circular mitochondrial genome (mtDNA),
which additionally contributes two ribosomal RNAs (12S and 16S
rRNAs, backbone of the mitoribosome) and twenty-two tRNAs to
the organelle’s own translational system, mitochondrial dysfunc-
tion in AD may arise, at least in part, from the existence of somatic
or inherited mtDNA variants [8,10,12,13]. However, further studies
are warranted to provide more evidence for this theory. Edland
et al. found a high mother-to-father ratio among affected parents
of the subjects with AD [14]. Moreover, mtDNA polymorphisms
occur more frequently in subjects with AD [15–18]. Therefore,
the association between mtDNA variants and AD risk should be
further investigated.

Variations in mtDNA are often described by established haplo-
type groups [19]. A human mitochondrial haplogroup refers to a
unique set of mtDNA polymorphisms, reflecting mutations accu-
mulated by a discrete maternal lineage [20]. Mitochondrial hap-
logroups are represented by a single letter (e.g., H, V, and L),
while mitochondrial subgroups are further defined by additional
numbers/letters (e.g., H51A1 and L3) [19]. Several previous studies
have investigated the association between the mitochondrial hap-
logroup and AD risk and suggested that mitochondrial haplogroups
U, H, J, and so on may be significant AD risk factors [8,19,21]. How-
ever, the conclusions from mitochondrial haplogroup-related AD
risk factor studies may be discrepant. Maruszak et al. reported that
cluster JT seems to be a protective factor for patients with AD,
while Tranah et al. suggested that individuals with haplogroup J
were more likely to perform worse on the MMSE test [22,23].
The reasons for mitochondrial haplogroup-related studies lacking
inter-study agreement are currently unknown. However, these dis-
crepancies contribute towards mitochondrial genetic variation to
AD risk inconclusively. To clarify the association between mito-
chondrial haplogroups and AD risk, the reasons for mitochondrial
haplogroup-related studies lacking inter-study agreement should
be investigated. We then aimed to investigate whether the hetero-
geneity among subgroups of haplogroups, which influences AD
risk, was explored in previous studies lacking inter-study agree-
ment. Investigation at the subgroup level is beneficial to clarify
the association between mitochondrial haplogroups and AD risk.
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To test this hypothesis, a more comprehensive analysis of the
association between the mitochondrial haplogroup and AD risk is
performed at the subgroup level. In this study, we not only ana-
lyzed mitochondrial haplogroup frequencies from mtDNA-
sequenced members of the AD Neuroimaging Initiative (ADNI)
cohort, but also investigated the association between AD-related
biomarkers through the AD Assessment Scale (ADAS), hippocampal
volume measurements, and hypometabolic convergence index
(HCI). This study provides greater insight into the contribution of
mitochondrial haplogroups to AD risk.
Methods

Ethics statement

All experiments involving human patients were conducted
according to the ethical policies and procedures approved by the
Resource Allocation Review Committee (RARC), consisting of mem-
bers independent of ADNI, approved by the NIA, and chaired by Dr.
Tom Montine at the University of Washington, Seattle,
Washington, USA (NO. U19 AG024904).

ADNI cohort

ADNI was launched in 2003 as a public-private partnership led
by Michael W. Weiner, MD [8]. The primary goal of ADNI is the
investigation of the possibility of combining serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assess-
ment for determination of the progression of MCI and early onset
of AD [8]. Descriptive and demographic characteristics of the ADNI
participants were recorded and made accessible. ADNI is a longitu-
dinal multicenter clinical study [8]. ADNI participants are classified
as AD, MCI, or norm aging, and the group assignment can change
over time. In this study, a subset of ADNI participants who under-
went complete mtDNA sequencing (n = 809) were analyzed.

Cognitive function test

In this study, AD Assessment Scale-Cognitive Subscale (ADAS-
Cog) was used to assess the cognitive function of ADNI partici-
pants. The ADAS is a brief cognitive test battery that is used to
assess learning and memory, language production, language com-
prehension, constructional praxis, ideational praxis, and orienta-
tion [24]. The test items related to the cognitive test of the ADAS
are provided in the order indicated. The word recall test is con-
ducted first and the word recognition task test is conducted subse-
quently, which enables the subjects to distinguish between the
words provided in the two tasks without considerable confusion
[24]. Following completion of the objective testing, subjective clin-
ical ratings of language ability and the ability to remember test
instructions are performed by the examiner. ADAS-cog was admin-
istered at baseline and at 6, 12, 18, 24, and 36 months.

MRI scanning

All study subjects were subjected to 1.5 Tesla MRI scans con-
ducted at regular intervals throughout the study [24]. The MRI
scans for the ADNI participants were conducted at baseline and
at 6, 12, 18, 24, and 36 months. The raw MRI imaging data were
processed and analyzed using FreeSurfer 4.3 by the UCSF team.
This processing includes multiple steps as follows: (1) motion cor-
rection and averaging of multiple volumetric T1-weighted images
(when more than one is available) [25]; (2) removal of non-brain
tissue by performing a hybrid watershed/surface deformation
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procedure; (3) automated Talairach transformation [25]; (4) seg-
mentation and normalization of the intensity of the subcortical
white matter and deep gray matter volumetric structures (includ-
ing hippocampus, amygdala, caudate, putamen, and ventricles)
[25]; (5) characterization of the tessellation of the gray matter-
white matter boundary [25]; (6) automated topology correction
and surface deformation following intensity gradients for optimal
placement of the gray/white and gray/cerebrospinal fluid borders
where the greatest shift in intensity defines the transition to the
other tissue class [25].

Fluorodeoxyglucose (FDG)-PET scanning

In total, 50% of the subjects underwent fluorodeoxyglucose
(FDG) PET scans completed at regular intervals throughout the
study in addition to 1.5 Tesla MRI scans [24]. The FDG-PET scan
was conducted at baseline and at 6, 12, 24, and 36 months. In this
study, a global index for FDG-PET, termed the HCI, which summa-
rizes voxel-wise information into a single measurement, was used.
HCI represents the level of hypometabolism in an FDG-PET image
[26]. HCI was calculated based on FDG-PET imaging by Dr.
Koeppe’s team at the University of Michigan. Briefly, this process
contains several steps as follows: first, to generate the t-score,
the normalized FDG-PET scan images acquired by SPM (Wellcome
Trust Center for Neuroimaging, UCL, UK) in probable AD patients
were compared with those of NCs; second, the t-score map was
transformed to the z-score map through the above-mentioned
method; finally, to calculate HCI, all voxels whose z-scores were
negative in both maps were summed, and the results were divided
by 10,000 [26].

Cerebral spinal fluid (CSF) biomarkers

CSF samples were collected from all subjects who provided con-
sent at the Baseline and M12 Visit [24]. All biomarker samples
were collected in the morning before breakfast and after an over-
night fast [24]. Only consumption of water was permitted until
blood was drawn and the lumbar puncture was completed. In this
study, three widely accepted AD biomarkers, namely Ab1�42, total
tau (t-tau), and phosphorylated tau (p-tau), were analyzed. All
CSF Ab1�42, t-tau, and p-tau181 concentrations were measured
using a micro-bead-based multiplex immunoassay, the INNO-BIA
AlzBio3 RUO test (Fujirebio, Ghent, Belgium) using the Luminex
platform [27].

mtDNA sequencing and annotation

Whole genome sequencing conducted with support from the
Brin-Wojcicki Foundation and the Alzheimer’s Association was
performed using samples obtained from 818 subjects from the
ADNI study by Illumina’s non-CLIA laboratory at roughly 30–40 x
coverage in 2012 and 2013. The mtDNA sequence was obtained
by remapping the original whole-genome sequencing data. Using
the original mappings, all reads that mapped to the mitochondrial
genome or those that were unmapped were extracted using SAM-
Tools and mapped to NC_01292 using Burrows-Wheeler Aligner
[28,29]. Next, local realignments were performed around indels
and base recalibration with GATK to refine the mappings. Finally,
FreeBayes (-p 1 –F 0.6, and removed variants with quality less than
20) were used to join call variants and convert the resulting VCF

file to FASTA with vcf2fasta (vcflib, https://github.com/vcflib/

vcflib) [24,30]. Mitochondrial variants for each sample were anno-
tated through 9228 mitochondrial DNA coding and RNA sequence
variants and 2792 control region variants downloaded from MITO-
MAP [31]. Mitochondrial haplotypes were annotated with Phy-Mer
3

[32]. Phy-Mer is used to report the five most likely mitochondrial
haplotypes and a score, where 1 is a perfect score. For each of
the samples, the top hit was selected [24]. All samples presented
with scores > 0.99, except one sample that presented with a score
of 0.988 [24].

Statistical analysis

Mean and standard deviation values were calculated for the
descriptive statistics of the continuous measures. Frequencies
and relative frequencies comprising haplogroup frequencies, the
proportion of AD subjects, and the proportion of MCI-to-AD con-
version were determined for the descriptive statistics of categorical
measures. For continuous measures, including ADAS-cog, hip-
pocampal volumes, HCI, Ab levels, and p-tau/tau ratio, the ANONA
test was performed to compare the mean values among different
groups. The objective of performing the ANOVA test was to esti-
mate the differences among the subject groups based on the
degree of variation of a particular measurement [33]. Haplogroup
frequencies, the proportion of AD subjects, and MCI-to-AD conver-
sion were compared among different groups using the Fisher’s
exact test, which is a commonly used and conceptually attractive
approach for evaluating the difference in observed frequencies
among different groups. Forest plots were generated to represent
the differences in proportions of subjects with AD and MCI-to-AD
conversion among different groups, which display the odds ratios
(ORs) with corresponding 95% confidence intervals. Furthermore,
the association between subgroups of different haplogroups and
cognitive function was evaluated. For this evaluation, LASSO
regression was used to select subgroups related to ADAS-cog.
LASSO regression is a popular technique for feature selection that
can exclude irrelevant features by shrinking coefficients to zeros
[34]. A least angle regression algorithm is used to solve LASSO
regression [35]. We analyzed the association between subgroups
of haplogroups related to AD risk and ADAS-cog using LASSO
regression, which shrunk the coefficients of irrelevant subgroups
to zero and removed the irrelevant subgroups.
Results

ADNI cohort demography

Samples obtained from 818 subjects in the ADNI cohort were
analyzed by performing whole genome sequencing. However, sam-
ples from nine subjects were removed due to failure in quality con-
trol. Therefore, 809 subjects were included in this study. The
demography information of this subset of ADNI is presented in
Table A1 (supplementary materials). The subjects used in this
study were divided into three groups as follows: AD (n = 48),
MCI (n = 480), and control (n = 281) groups. The proportion of
males in the MCI (58%) and control (48%) groups was not signifi-
cantly different (p > 0.05). The proportion of males in the MCI
(58%) and control (48%) groups exceeded that of the AD group
(38%). The age of the subjects in these three groups was similar.

The AD group has higher haplogroup J frequency

First, we analyzed the different frequencies of mitochondrial
haplogroups in the ADNI cohort. In this subset of the ADNI cohort
(n = 809), 15 different types of mitochondrial haplogroups were
observed. The frequencies of five mitochondrial haplogroups (hap-
logroups J, H, U, T, and K) exceeded 5%. The frequencies of 10 mito-
chondrial haplogroups (haplogroups R, I, L, A, N, B, V, W, X, and M)
were less than 5%, which were merged into the other category in
the following statistical analysis. To test whether there was a dif-

https://github.com/vcflib/vcflib
https://github.com/vcflib/vcflib


Fig. 1. A: The distribution of haplogroups in the Alzheimer’s disease (AD) group. B: The distribution of haplogroups in the control group. C: Forest plots showing odds ratios
(control group vs AD group) and 95th percentile confidence intervals for haplogroups. The differences in subjects with AD among different haplogroups were compared by the
Fisher’s exact test. D: The proportion of subjects with AD carrying haplogroup J in males and females. The difference of frequencies in males and females were compared by
the Fisher’s exact test.
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ference in the frequencies of mitochondrial haplogroups between
the AD (n = 48) and control (n = 281) groups, the Fisher’s exact test
was performed and a forest plot was generated (shown in Fig. 1).
Our results showed that the frequency of haplogroup J in the AD
group exceeded that in the control group (OR = 0.33, 95% CI
0.19–0.58, p = 0.013), suggesting that haplogroup J might be
related to AD risk. Furthermore, to investigate the gender speci-
ficity of AD risk among subjects with haplogroup J, the proportion
of subjects with AD carrying haplogroup J among males and
females was compared. The results showed that the proportion
of subjects with AD carrying haplogroup J was not significantly dif-
ferent between male and female subjects (p > 0.05, compared by
4

the Fisher’s exact test). This suggests that no gender specificity
exists in subjects with AD carrying haplogroup J.

The cognitive function of subjects with haplogroup J

The above-mentioned results suggest that presence of the hap-
logroup J is related to AD risk. Furthermore, we hypothesized that
patients with AD or MCI with haplogroup J might present with
worse cognitive function than those with other haplogroups. To
test our hypothesis, the cognitive function of patients with AD
and MCI with haplogroup J and other haplogroups were compared
(n = 528). The results (Fig. 2) showed that the ADAS-cog levels in



Fig. 2. The time course of AD Assessment Scale-Cognitive Subscale (ADAS-cog) in the haplogroup J and other haplogroups. The ADAS-cog between haplogroup J and other
haplogroups were compared by ANOVA. There is no significant difference between these two groups.
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these two groups were not significantly different. Haplogroup J, an
AD risk factor, did not influence cognitive function, which seemed
counterintuitive. To investigate this aspect, a new hypothesis was
proposed wherein presence of heterogeneity among the subgroups
of haplogroup J was considered, which might explain the cognitive
function difference observed between patients with haplogroup J
and patients with other haplogroups.

The heterogeneity in subgroups of haplogroup J

To test the hypothesis of heterogeneity in subgroups of hap-
logroup J, we investigated the association between different sub-
groups of haplogroup J and ADAS-cog in AD/MCI subjects
(n = 69). However, in the ADNI cohort, the subjects with hap-
logroup J were distributed into multiple subgroups dispersedly
and each subgroup contained few samples, thus rendering impos-
sible direct analysis of their association with ADAS-cog. Therefore,
a statistical strategy was considered in this study (Fig. 3). As the
mitochondrial haplogroups are determined by analysis of mtDNA
SNPs, data on the haplogroup J-specific mtDNA SNPs were
extracted from the WGS dataset. Our aim was to investigate the
heterogeneity in subgroups of haplogroup J. Hence, SNPs that were
commonly observed in subjects with haplogroup J
(frequency > 90%) were excluded. To avoid potential statistical
bias, the SNPs that were rare in subjects with haplogroup J (fre-
quency < 5%) were also excluded. Thereafter, data on 66 hap-
logroup J-specific mtDNA SNPs were extracted (presented in
Supplementary Materials Table A2). Second, the correlation
between these SNPs and ADAS-cog was evaluated by performing
LASSO regression. The results showed that 16 SNPs were positively
associated with ADAS-cog (termed as exacerbating SNPs), 13 were
negatively associated with ADAS-cog (termed as protective SNPs),
and 37 were irrelevant to ADAS-cog (termed as irrelevant SNPs).
According to the results of LASSO regression, the subgroups were
regrouped into the four following clusters: subgroups harboring
exacerbating SNPs (38%, n = 26), subgroups harboring protective
SNPs (22%, n = 15), subgroups harboring both exacerbating and
protective SNPs (16%, n = 11), and subgroups harboring irrelevant
SNPs (25%, n = 17) (Supplementary Materials Table A3). We then
compared the ADAS-cog among these four clusters (Fig. 3B). Sub-
groups harboring exacerbating SNPs had significantly higher
5

ADAS-cog levels than those in the other three clusters. The
ADAS-cog levels in subgroups harboring both exacerbating and
protective SNPs and those harboring irrelevant SNPs were rela-
tively similar. The subgroups harboring protective SNPs had lower
ADAS-cog levels than those in the other three clusters.

To gain further insight into the heterogeneity in subgroups of
haplogroup J, we compared the above-mentioned four clusters
with the other haplogroups. The results are shown in Fig. 3C-H.
The ADAS-cog level was significantly higher in subgroups harbor-
ing exacerbating SNPs than that in the other haplogroups. Sub-
groups harboring both exacerbating and protective SNPs and
those harboring irrelevant SNPs exhibited similar ADAS-cog levels
to the other haplogroups. The subgroups harboring protective SNPs
had lower ADAS-cog levels than those in the other haplogroups.

These results suggest that heterogeneity exists in subgroups of
haplogroup J. Different subgroups exhibit different levels of AD
risk, and subgroups harboring exacerbating SNPs play a more
important role in AD risk.

Image evidence for heterogeneity in subgroups of haplogroup J

To provide further evidence to validate the hypothesis of
heterogeneity in subgroups of haplogroup J, we analyzed the MRI
image and FDG-PET data (n = 69). The hippocampal volume was
selected as the MRI image biomarker. First, the hippocampal
volumes in the four clusters were compared with each other
(Fig. 4A-F). Subgroups harboring exacerbating SNPs exhibited more
decreased hippocampal volumes than the other three clusters. The
subgroups harboring both exacerbating and protective SNPs had
similar hippocampal volumes to subgroups harboring irrelevant
SNPs. The hippocampal volumes in subgroups harboring protective
SNPs were higher than those in the other three clusters. To gain
more conclusive evidence, the hippocampal volumes of the
above-mentioned four clusters were compared with those of other
haplogroups. The hippocampal volumes in the subgroups harbor-
ing exacerbating SNPs decreased significantly compared to those
of other haplogroups. The subgroups harboring protective SNPs
showed remarkably increased hippocampal volumes compared
with those of other haplogroups. The subgroups harboring both
exacerbating and protective SNPs and those harboring irrelevant
SNPs had similar hippocampal volumes with other haplogroups.



Fig. 3. A: The LASSO regression coefficient between mtDNA SNPs and ADAS-cog. B: The time course of ADAS-cog among four subgroup clusters of haplogroup J. C:
Comparison of ADAS-cog levels among four subgroup clusters of haplogroup J. D: Comparison of ADAS-cog levels between subgroups harboring exacerbating SNPs. E:
Comparison of ADAS-cog levels between subgroups harboring irrelevant SNPs. F: Comparison of ADAS-cog levels between subgroups harboring protective SNPs. G:
Comparison of ADAS-cog levels between subgroups harboring both exacerbating and protective SNPs. H: Comparison of ADAS-cog levels among subgroup clusters in
haplogroup J and other haplogroups. The levels of ADAS-cog in different groups were compared by ANOVA. ** p < 0.01, * p < 0.05.

H. Liu, Y. Zhang, H. Zhao et al. Journal of Advanced Research xxx (xxxx) xxx
Furthermore, we analyzed the FDG-PET results to gain more
insights into the heterogeneity in subgroups of haplogroup J. In this
study, a global index for FDG-PET, termed as HCI, was selected to
quantify the cerebral metabolic variation in subjects with ADNI.
With higher HCI, the subjects may develop more severe hypometa-
bolism throughout the brain. Although ADNI provides HCI data at
multiple time points, data at these time points (except baseline)
contain markedly few samples with haplogroup J (less than five
samples). Therefore, to avoid potential statistical bias, HCI data at
any time point that were obtained after analysis of less than five
samples with haplogroup J were excluded. Finally, only HCI data
at baseline were included in this study. First, the HCIs in the
four clusters of haplogroup J were compared with each other
(Fig. 4G-L). The subgroups harboring protective SNPs had signifi-
cantly lower HCI levels compared with those in the other three
clusters. Second, the four clusters of haplogroup J were also com-
pared with other haplogroups. The subgroups harboring both exac-
erbating and protective SNPs, those harboring irrelevant SNPs, and
those harboring exacerbating SNPs had similar HCI levels to other
haplogroups. The HCI levels in subgroups harboring protective
SNPs decreased significantly compared with those of other
haplogroups.

In summary, our results suggest that the levels of hippocampal
volumes and HCI among different subgroups of haplogroup J and
other haplogroups were significantly different. These results
revealed the physiological basis for the difference among differ-
ent subgroups, which provided further evidence for validation
of the hypothesis on the heterogeneity in subgroups of
haplogroup J.
6

Different MCI-to-AD conversion proportions in different subgroups in
haplogroup J

To obtain further insights into the impact of different subgroups
in haplogroup J on AD risk, the MCI-to-AD conversion proportions
in different subgroups were investigated (n = 480). First, the differ-
ent MCI-to-AD conversion proportions in the four clusters of hap-
logroup J were compared. The results (Fig. 5A-G) showed that
subgroups harboring both exacerbating and protective SNPs and
subgroups harboring exacerbating SNPs had a significantly higher
MCI-to-AD conversion proportion than that in other subgroups.
Second, the four clusters of haplogroup J were compared to those
of other haplogroups. The results showed that the MCI-to-AD con-
version proportion in the subgroups harboring both exacerbating
and protective SNPs and subgroups harboring exacerbating SNPs
increased significantly compared with that of other haplogroups.
These results show that the MCI-to-AD conversion proportion var-
ies in different subgroups of haplogroup J, suggesting that the
heterogeneity of haplogroup J is also associated with MCI-to-AD
conversion risk.

The independence of heterogeneity in haplogroup J to Ab and tau

We explored whether the heterogeneity in subgroups of hap-
logroup J was Ab- or tau-dependent. To investigate this, the levels
of CSF Ab and the p-tau/tau ratio in different subgroups of hap-
logroup J were compared (n = 528). As the number of samples in
the subgroups harboring protective SNPs and those harboring irrel-
evant SNPs was less than five, only those harboring both exacer-



Fig. 4. A: Comparison of the hippocampal volume levels among four subgroup clusters of haplogroup J. B: Comparison of hippocampal volume levels between subgroups
harboring exacerbating SNPs. C: Comparison of hippocampal volume levels between subgroups harboring irrelevant SNPs. D: Comparison of hippocampal volume levels
between subgroups harboring protective SNPs. E: Comparison of hippocampal volume levels between subgroups harboring both exacerbating and protective SNPs. F:
Comparison of hippocampal volume levels among subgroup clusters in haplogroup J and other haplogroups. G: Comparison of hypometabolic convergence index (HCI) levels
among four subgroup clusters of haplogroup J. H: Comparison of HCI levels between subgroups harboring exacerbating SNPs. I: Comparison of HCI levels between subgroups
harboring irrelevant SNPs. J: Comparison of HCI levels between subgroups harboring protective SNPs. K: Comparison of HCI levels between subgroups harboring both
exacerbating and protective SNPs. L: Comparison of HCI levels among subgroup clusters in haplogroup J and other haplogroups. The levels of hippocampal volume and HCI in
different groups were compared by ANOVA. ** p < 0.01, * p < 0.05.
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bating and protective SNPs and exacerbating SNPs alone as well as
other haplogroups were included. The results (Fig. 6) showed that
the levels of CSF Ab and the p-tau/tau ratio had no significant dif-
ference in different groups, suggesting that heterogeneity in hap-
logroup J was independent of Ab and tau.
Discussion

In this study, the heterogeneity of subgroups of haplogroup J
was investigated, which suggested that different subgroups exhib-
ited different levels of AD risk. This study is beneficial to elucidate
the association between mitochondrial haplogroups and AD risk.
As heterogeneity exists among subgroups of haplogroups, the asso-
ciation between the mitochondrial haplogroup and AD risk may be
ambiguous. The discovery of heterogeneity necessitates conduc-
tion of subgroup-level research that can recognize the risk factor
accurately from data comprising a mixture of factors analyzed.
Additionally, the heterogeneity hypothesis provides a novel expla-
nation for AD risk research involving the discovery of mitochondria
haplogroups lacking inter-study agreement.

This study highlights the impact of mitochondrial haplogroup J
on AD risk and the heterogeneity among subgroups of haplogroup
J. Several previous studies have reported an association between
haplogroup J and AD risk. However, the results of these studies
seem to be inconsistent. Tranah et al. and Swerdlow et al. have sug-
gested that haplogroup J is a risk factor for AD [8,23]. Maruszak
et al. have reported that haplogroup J is a protective factor for
AD [22]. Andrews et al. have reported that a significant association
between haplogroup J and AD risk does not exist [36]. The discrep-
7

ancy in these results may be explained by the heterogeneity among
subgroups of haplogroup J. J1B1-related subgroups J1B1A1,
J1B1A1B, and J1B1B2 are protective subgroups. This finding is con-
sistent with that of a study conducted by Maruszak et al., which
highlights that subgroup J1B1 plays a protective role against AD
[22]. Otherwise, the cohort containing mixed types of subgroups
may counteract the differences among haplogroups. The same phe-
nomenon has been reported in several previous studies that could
not indicate an association between haplogroup J and AD [37,38].
Nevertheless, Tranah et al. observed a more severe cognitive
decline in the haplogroup J cohort, which might comprise a high
proportion of subgroups harboring exacerbating SNPs [23]. In sum-
mary, the discrepancy in the results reported by previous studies
on the association between mitochondrial haplogroups and AD risk
may be attributed to the heterogeneity of subgroups in hap-
logroups. The cohort used in studies containing different propor-
tions of different subgroups may report different conclusions.
Therefore, it is essential to analyze the association between mito-
chondrial haplogroups and AD risk at the subgroup level to ascer-
tain the existence of heterogeneity among subgroups.

As the bias of haplogroups/subgroups is attributed to a set of
mtDNA SNPs, the biological basis of heterogeneity among sub-
groups may rely on the different mtDNA SNPs harbored by differ-
ent subgroups. Therefore, studies conducted to investigate
heterogeneity among subgroups also provide novel insights into
the association of the single mtDNA SNP with AD risk. For example,
the mtDNA SNP C242T, one of the defining SNPs for the subgroup
J1B1A, is recognized as a protective SNP [39]. If a study is con-
ducted to investigate whether a single mtDNA SNP C242T protects
against AD, the cohort, including J1B1A and its subgroups



Fig. 5. A: Comparison of the MCI-to-AD conversion proportion among four subgroup clusters of haplogroup J. B: Comparison of the MCI-to-AD conversion proportion
between subgroups harboring exacerbating SNPs. C: Comparison of the MCI-to-AD conversion proportion between subgroups harboring irrelevant SNPs. D: Comparison of
the MCI-to-AD conversion proportion between subgroups harboring protective SNPs. E: Comparison of the MCI-to-AD conversion proportion between subgroups harboring
both exacerbating and protective SNPs. F: Comparison of the MCI-to-AD conversion proportion among subgroup clusters in haplogroup J and other haplogroups. G: Forest
plots showing odds ratios (subgroup clusters in haplogroup J vs. other haplogroups) and 95th percentile confidence intervals for haplogroups. The frequencies of MCI-to-AD
conversion in different groups were compared by the Fisher’s exact test. ** p < 0.01, * p < 0.05.
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(e.g., J1B1A1, J1B1A1A, J1B1A1B, and J1B1A1C) may be analyzed.
However, heterogeneity among these subgroups may affect the
results. For example, the SNP C5463T, one of the defining SNPs
for subgroup J1B1A1A, is an exacerbating SNP, suggesting that sub-
jects in subgroup J1B1A1A harbor both exacerbating and protective
SNPs [39]. The cognitive function of subjects in these subgroups
was significantly different compared with those of the other
8

subgroups, such as J1B1A1 and J1B1A1B, which harbored protec-
tive SNPs only. Therefore, studies using cohorts with different pro-
portions of different subgroups may result in reporting of
controversial conclusions. A similar issue might have been encoun-
tered in other previous studies. Hutchin et al. reported that the
mtDNA 4336G mutation was related to AD risk in a North Ameri-
can cohort [16]. However, two other studies using different cohorts



Fig. 6. A: Cerebral spinal fluid (CSF) Ab levels in different subgroup clusters and other haplogroups. B: CSF p-tau and total tau ratio levels in different subgroups clusters and
other haplogroups. The levels of Ab and the p-tau/tau ratio in different groups were compared by ANOVA.
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did not confirm these results [40,41]. The bias of heterogeneity
among subgroups is attributed to a set of mtDNA SNPs, and studies
involving single mtDNA SNPs may inevitably result in the forma-
tion of different types of subgroups. Therefore, even for studies
at the single SNP level, subgroup analysis is essential.

A distinct statistical strategy has been developed for conducting
subgroup-level research. Statistical analysis at the subgroup level
is extremely challenging for samples distributed in multiple sub-
groups dispersedly. The dispersed distribution of samples renders
it impossible to analyze a single subgroup using traditional statis-
tical analysis. Even if the sample size is extended, this issue cannot
be addressed satisfactorily because to ensure that each subgroup
comprises sufficient samples, the total sample size needs to be
increased by multiple folds, and this may be difficult. To address
this issue, a distinct statistical strategy was developed to enrich
the samples at the subgroup level by merging multiple subgroups
into clusters. This merging process was performed based on
haplogroup-specific SNPs. These SNPs were divided into three cat-
egories (exacerbating SNPs, protective SNPs, and irrelevant SNPs)
by performing LASSO regression. According to the above-
mentioned classification, different subgroups can be merged into
four clusters (subgroups harboring exacerbating SNPs, subgroups
harboring protective SNPs, subgroups harboring both exacerbating
and protective SNPs, and subgroups harboring irrelevant SNPs),
which can ensure that each cluster contains sufficient samples
for statistical analysis with a relatively small total sample size.
Our statistical strategy can be adjusted for application in other sub-
group level studies, which may facilitate the investigation of the
association betweenmitochondrial haplogroups and AD at the sub-
group level.

There are two limitations of this study. First, few subgroups of
haplogroup J were not observed in the ADNI cohort. The character-
istics of the remaining subgroups remain to be further investi-
gated. Second, this study focused on the heterogeneity among
subgroups of haplogroup J. The heterogeneity among subgroups
of other haplogroups remains to be elucidated.
Conclusions

This study highlighted the association between haplogroup J
and AD risk at the subgroup level. The heterogeneity among
9

subgroups of haplogroup J was revealed, which suggested that dif-
ferent subgroups exhibited different levels of AD risk. The hetero-
geneity and association between haplogroup J and AD risk are
independent of Ab/p-tau levels. This study provides novel insights
into the association between mitochondrial haplogroups and AD
risk.
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